Grundlagen Chemie (Inhalte der 8. Klasse NTG im G9-Lehrplan) am Gymnasium Trudering

Die übergeordneten Themen orientieren sich am aktuellen Lehrplan (https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/8/chemie)

Folgende **Grundlagenfähigkeiten** wurden in der 8. Klasse NTG vermittelt:

Lehrplanbereich	Konkrete Fähigkeit	Beispiel / Anmerkung	
Wie Chemiker denken und arbeiten	Die Bedeutung von Gefahrstoffkennzeichen kennen sowie allgemeine Sicherheitsaspekte bei Laborarbeiten beschreiben können	leicht entflammbar Bei jeglicher Form von Laborarbeit besteht Schutzbrillenpflicht	
	Chemische Fragestellungen bzw. Beobachtungen formulieren können sowie darauf aufbauend hypothesengeleitet Experimente durchführen können Wichtige Punkte: Fragestellung bzw. Beobachtung, Hypothese, Versuchsplanung, Versuchsdurchführung inkl. Versuchsprotokoll, Rückbezug zur Hypothese	Die Mischung verschiedener Farben führt zur Farbe Schwarz, Hypothese: Schwarze Fineliner gehen auf ein Farbgemisch zurück, Überprüfung mit Hilfe eines Chromatographie- Experiments	
	Das Konzept der negativen und positiven Blindprobe erläutern sowie deren Bedeutung beschreiben können	Positive Blindprobe: Nachweisreaktion absichtlich mit zu analysierenden Substanz durchführen	
	Unterschiedliche Modelle kritisch hinterfragen sowie situationsgerecht anwenden können	Das einfache Teilchenmodell reicht für die Beschreibung von Aggregatzuständen aus; bei der Beschreibung chemischer Reaktionen lässt sich damit aber die Teilchenumgruppierung nicht darstellen → Wechsel auf Daltonsches Atommodell	
Stoffe und ihre Eigenschaften	Die Stoff- und Teilchenebene korrekt voneinander trennen können	Stoffe können z.B. schmelzen, die Farbe ändern oder besitzen eine konkrete Dichte etc. Teilchen können z.B. ihre Geschwindigkeit ändern, Abstände zueinander vergrößern, Anziehungskräfte untereinander ausbilden usw.	

	Des Obsesses 11	CI-CC I	(4/
	Den Übergang zwischen Aggregatzuständen fachsprachlich beschreiben und auf Teilchenebene erläutern können	Stoffebene: Wasser verdampft (nicht verdunstet) bei Temperaturen ab 100°C. Teilchenebene: Die Teilchen werden schneller, haben größere Abstände und geringe Anziehungskräfte zueinander	
Die chemische Reaktion	Das Energiediagramm für exotherme und endotherme Reaktionen inklusive möglicher Katalysatorwirkung skizzieren können	z.B. exotherme Reaktion Edukte Reaktion Reaktion Produkte Reaktionsverlauf	
	Die Regeln der Formelsprache bei	Molekülformel	Benennung
	molekularen Stoffen auf unterschiedliche Beispiele	NCI ₃	Stickstofftrichlorid
	anwenden können	BrF ₅	Brompentafluorid
		XeO ₃	Xenontrioxid
		I ₂ O ₄	Diiodtetraoxid
		C ₃ N ₄	Trikohlenstofftetranitrid
	Reaktionsgleichungen mit molekularen Stoffen aufstellen und ausgleichen können	Wasserstoff und Sauerstoff reagieren zu Ammoniak. 3 H ₂ + N ₂ → 2 NH ₃ m(X) = n(X) · M(X) Die molare Masse M lässt sich aus dem Periodensystem ablesen (vgl. Rückseite)	
	Die mathematische Beziehung zwischen der Masse, der Stoffmenge und der molaren Masse bei quantitativen Berechnungen anwenden können		

Chemische Verbindungen und ihre Eigenschaften	Die Regeln der Formelsprache bei Salzen auf unterschiedliche Beispiele anwenden können	Name Kaliumoxid Aluminiumsulfid Ammonium- carbonat Eisen(III)- phosphat Magnesium- fluorid	Verhältnis- formel K ₂ O Al ₂ S ₃ (NH ₄) ₂ CO ₃ FePO ₄ MgF ₂
	Reaktionsgleichungen mit molekularen Stoffen, Salzen und Metallen aufstellen und ausgleichen können Ionengleichungen (z.B. für Fällungsreaktionen) aufstellen	Gold reagiert in Gegenwart von Chlor zu Gold(III)-chlorid 2Au + 3Cl₂→2AuCl₃ Nachweis von Chlorid-Ionen in einer Calciumchlorid-Lösung:	
	können	Ca^{2+} (aq.) + 2 Cl ⁻ (aq.) + 2 Ag ⁺ (aq.) + 2 NO ₃ ⁻ (aq.) \rightarrow 2AgCl \downarrow (s) + Ca^{2+} (aq.) + 2 NO ₃ ⁻ (aq.)	

Knicken und Rückseite aufeinander kleben, an Längsstrichen schneiden → Grundwissenskärtchen

Stoffe und ihre Eigenschaften		
Diffusion	Vorgang, bei dem sich Teilchen aufgrund der Zufallsbewegung ausbreiten.	
Löslichkeit	Die Löslichkeit eines Stoffes gibt an, in welchem Umfang ein Reinstoff in einem bestimmten Lösungsmittel gelöst werden kann.	
Bestandteile der Luft	ca. 78% Stickstoff, ca. 21% Sauerstoff ca. 1% Edelgase, Kohlenstoffdioxid und Wasserstoff	
Wichtige Nachweisreaktionen für Gase	Glimmspanprobe für Sauerstoff, Kalkwasserprobe für Kohlenstoffdioxid, Knallgasprobe für Wasserstoff	
Die chemische Reaktion		
Kennzeichen einer chemischen Reaktion	Stoffumsatz, Energieumsatz, Teilchenumgruppierung	
Schema zur Einteilung von Stoffen	Stoffe Stoffgemische Reinstoffe Verbindungen Elemente	
Definition Verbindung und Element	Verbindungen können durch chemische Reaktionen in andere Reinstoffe zerlegt werden, bei Elementen ist dies nicht möglich	

Regeln zum Atommodell nach Dalton	 alle Elemente aus dem Periodensystem bestehen aus kleinsten Teilchen, den sog. Atomen Atome verschiedener Elemente unterscheiden sich in Masse und Größe bei chemischen Reaktionen kommt es zur Umgruppierung der kleinsten Teilchen; Atome werden dabei weder zerstört noch in Atome anderer Elemente umgewandelt 	
Ordnungsprinzipien im Periodensystem	Elemente können in die Bereiche Metalle, Halbmetalle und Nichtmetalle eingeteilt werden (vgl. Rückseite PSE!)	
Fachbegriff für die ersten beiden und letzten beiden Hauptgruppen im Periodensystem	Hauptgruppe: Alkalimetalle Hauptgruppe: Erdalkalimetalle Hauptgruppe: Halogene Hauptgruppe: Edelgase	
Gesetz von der Erhaltung der Masse	Die Gesamtmasse aller beteiligten Stoffe ändert sich während einer chemischen Reaktion nicht	
Definition innere Energie	Die innere Energie E _i beschreibt den Energiegehalt, der in einem Stoff "gespeichert" ist	
Definition exotherm und endotherm	Exotherm: Reaktion, bei der Energie an die Umgebung abgegeben wird Endotherm: Reaktion bei der Energie von der Umgebung aufgenommen wird	
Energieerhaltungssatz	Energie kann weder erzeugt noch zerstört werden, sondern "nur" in eine andere Energieart umgewandelt werden (z.B. Lichtenergie in Wärmeenergie)	
Aktivierungsenergie	Die zum Start einer chemischen Reaktion benötigten Energie	

- setzt die Aktivierungsenergie EA herab **Eigenschaften eines Katalysators** - beschleunigt eine chemische Reaktion - geht aus der Reaktion unverbraucht hervor Molekül: Teilchen aus zwei oder mehr aneinander gebundenen Nichtmetallatomen **Definition Molekül, Verbindungsmolekül** Elementmoleküle sind immer aus und Elementmolekül zwei gleichen Atomen aufgebaut Verbindungsmoleküle sind immer aus zwei oder mehr unterschiedlichen Atomen aufgebaut Alle Element, die in der HOFBrINCI-Regeln Die HOFBrINCI-Regel stehen, sind aus Elementmolekülen aufgebaut (Wasserstoff, Sauerstoff, Fluor, Brom, Iod, Stickstoff, Chlor) Molekülformel **Trivialname** Wasser H_2O Ammoniak NH_3 Trivialnamen wichtiger molekularer Stoffe Methan CH₄ Kohlenstoffdioxid CO_2 Wasserstoffperoxid H_2O_2 Name des Molekülformel Alkans (C_nH_{2n+2}) Methan CH₄ C₂H₆ Ethan C₃H₈ Propan Butan C₄H₁₀ Die homologe Reihe der Alkane Pentan C₅H₁₂ Hexan C₆H₁₄ Heptan C₇H₁₆ C₈H₁₈ Octan Nonan C9H20 Decan C₁₀H₂₂ **Definition Verbrennungsreaktion Exotherme Reaktion unter** Beteiligung von Sauerstoff

Definition Stoffmenge	Beschreibt die Teilchenanzahl einer Stoffportion in mol 1 mol = 6,022 · 10 ²³ Teilchen		
Verbindungen und ihre Eigenschaften			
Definition Anion, Kation und Molekülion	Anion: Negativ geladenes Ion Kation: Positiv geladenes Ion Molekülion: positiv oder negativ geladenes Molekül		
Aufbau eines Salzes auf Teilchenebene	Aufbau als Ionengitter, in dem eine Vielzahl an Ionen regelmäßig angeordnet sind.		
	Name des Molekül-Ions	Formel	
	Ammonium-Ion	NH ₄ ⁺	
	Carbonat-Ion	CO ₃ ²⁻	
	Hydrogencarbonat-Ion	HCO ₃ -	
	Hydroxid-Ion	OH-	
Wichtige Molekülionen	Nitrat-Ion	NO ₃ -	
	Nitrit-Ion	NO ₂ -	
	Permanganat-Ion	MnO ₄ -	
	Phosphat-Ion	PO ₄ 3-	
	Sulfat-Ion	SO ₄ ²⁻	
	Sulfit-Ion	SO ₃ ²⁻	
Das Kern-Hülle-Modell für den Aufbau von Atomen	- Atomkern mit positiv geladenen Protonen und neutral geladenen Neutronen - Atomhülle mit negativ geladenen Elektronen		